Short Term Load Forecasting on Individual Distribution load using S-ARIMA
نویسندگان
چکیده
The electric power load forecasting is critical for stable electric power system supply. In this paper, a seasonal ARIMA model was used to effectively forecast power load data characterized using periodicity. A numerical example reveals that the seasonal ARIMA model effectively forecast periodic power load.
منابع مشابه
Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملWind Power and Electric Load Forecasting
As renewable energy increasingly integrates into the electric power system, electric load forecasting and renewable energy power generation forecasting become more important. In this project, ARIMA and NARX are applied to build load forecasting model focusing on improving statistical and computational efficiency without losing accuracy. ARIMA turns out to be better for short term forecasting wh...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کامل